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I. THE BEHAVIOUR OF LARGE WATER DROPS
COLLIDING DURING FREE FALL

OF

An experiment is described in which pairs of water drops of different size were caused
to collide during free fall at a velocity equal to the difference of their terminal velocities
in still air. The collision parameters of trajectory, drop size, and drop charge were
controlled with precision, and impacts of a particular kind could be reproduced in-
definitely. By using synchronized flash photography, well in excess of 30000 measure-
ments were taken from more than 10000 frames of film of the resulting behaviour of
the water-drop pairs.

Data are discussed in terms of an impact parameter, X, which defines the relative
trajectory of the drops in the centre-of-mass frame, and three energy parameters e,
e, and ep which delineate the properties electrostatic energy, rotational energy, and
total energy of the two-drop system before impact. Input parameters were confined to
values appropriate to natural rainfall.

After collision four basic types of rotation occurred, the particular kind of rotation
depending upon X, ¢g, ep and e,. Measured rates of rotation were compared with that
to be expected from a simple model of inclastic collision between solid spheres and
showed a marked resemblance. Distributions of mass after collision were compared with
a model based upon a bimodal Gaussian distribution to good effect. In addition,
frequency distributions of the number of drop products resulting from a given collision
were prepared showing the controlling influence of the impact parameter, X, and the
effect of varying drop charge. Relations were also established between statistical values
for the coalescence efficiency of a given drop pair and the input parameters; however,
while all results were consistent and reproducible, the effect of drop charge could not
be demonstrated by a simple model.

A A

INTRODUCTION

Numerous experiments have been performed to determine numerical values for the collision

OF

efficiency of pairs of drops of different size which impact during free fall. Data have been

analysed to determine the criteria for coalescence, subscquent disruption, and also to examine
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COLLISIONS BETWEEN LIQUID DROPS 637

the general dynamical behaviour of the two-drop system. Schotland (1960) investigated collisions
between electrically neutral drops of radius 100~-400 um and a hemispherical target and deter-
mined that the onset of coalescence was dependent on the Weber number, We[We = pVZD/o,
where p is the drop density, D the drop diameter, V the normal velocity component, and o the
surface free energy. Coalescence occurred for We > 3, whereas bounce occurred at low specds.
This dimensionless number is a measure of the ratio of the inertial force to the surface force and
has been shown by Schotland (1960), Foote (1975) and Sartor & Abbott (1972) to be of funda-
mental importance. Magarvey & Geldart (1962) appear to have been the first to study drops of
a wide radius range colliding at their relative terminal velocities. Unfortunately their control
of the collision was poor and their resulting data were largely qualitative, but some statistics on
wake capture, temporary fusion, and coalescence were compiled.

The first useful quantitative study of the drop collision problem was that of Adam, Lindblad
& Hendricks (1968). They made a careful investigation of the effect of varying the impact
parameter, X, where X is defined as the ratio of the distance between droplet trajectories in
their centre-of-mass frame to the sum of the drop radii. More recent investigations of the collision
process have been performed by Montgomery (1971), Brazier-Smith, Jennings & Latham (1971),
Spengler & Gokhale (1973) and McTaggart-Cowan & List (1975). The work of Montgomery,
and of Spengler & Gokhale, produced little quantitative data, and the work of Brazier-Smith
et al. suffered from confinement of their analysis largely to collisions between drops of equal size
with no attempt to study impacts at relative terminal velocities. McTaggart-Cowan & List
made considerable efforts to reproduce the conditions obtaining during natural rainfall and
devised a means of accelerating their large drops to their terminal velocities. They investigated
the collision and breakup of pairs of drops of different size, but while their data gave useful
information on the statistical nature of collision products, their control of the collision parameters
was very poor and consequently no quantitative data on the influence of the impact parameter
X were possible. In the context of the work described here, the work of Adam et al. (1968) thus
cmerges as the most useful previous investigation of the problem of drop collision under natural
free-fall conditions.

In the experiments described below, the collision and subsequent behaviour of water drops
of unequal size has been investigated. Though falling at somewhat less than their terminal
velocity, the water drops were caused to collide at a relative velocity equal to the difference of
their terminal velocities and with precise control of the impact parameter, X. In these experi-
ments aerodynamic forces are about two orders of magnitude smaller than the forces of collision
and consequently, although drops were not fully deformed by the airflow, the results are thought
to be applicable to calculations on the genesis of natural raindrop size distributions. The influence
of drop charge on the collisions was investigated independently of other input parameters.

SELECTION OF THE INPUT PARAMETERS

Since there is a lack of definitive data on collisions between drops falling freely in air, there
follows an examination of the problem to determine what sizes of water drops might best be
studied in a limited investigation and also a derivation of a set of energy parameters which
describe the conditions of collision. The treatment follows similar lines to that of Cohen, Plasil &
Swiatecki (1974), though these workers were, in fact, considering possible configurations of

idealized atomic nuclei.
66-2
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638 S. G. BRADLEY AND C.D.STOW

First, consider the condition in which the two colliding drops coalesce into a single liquid
mass. The motion of the resulting drop is described by an energy equation,

EK +ED = ET} (I 1)

where Eg is the kinetic energy not associated with rotation of the drop, Ey corresponds to the
energy which is associated with deformation, and Ey is the total available energy (which is
constant for a particular collision). The quantity £, may be expressed in terms of three further

quantities, Ep = Eg+Eqg+ Ey, (I2)

where Eg is the surface free energy, Eg the electrostatic energy and Ey the rotational energy of the
drop.

Each of the energy terms in equations (I 1) and (I 2) may be divided into two parts, one a
function of drop shape only, and the other a scale factor denoting the contribution of the energy
term in a particular collision. If the combined liquid mass in its undeformed state forms a sphere
of radius R,, then we may denote by E2, E&, E}, E}, and Ef the appropriate energy contributions.
The energy of deformation and the kinetic energy may now be written in the dimensionless

forms Ep = (Ep—EB)|ES = (Es~ ES+Eq— ES+ Ey — EY) |
= (ds—1) +2¢c(Ag—1) +ep (Ag—1)
and e = EgES = (Ey—Ey)|ES
= tp—Ag— 2¢c4c— e Ag, (I3)

where Ay, Ac and 4y, are the surface, electrostatic and rotational energies of the drop, normalized
with respect to the corresponding quantities for the sphere of radius R,; they are functions of shape

only, thus Ag (shape) = Eg[EQ, (I'4a)
Ag (shape) = Eg[Eg, (148)
AR (Shape) — ER/E%. (I 46)

The dimensionless quantities, ¢, e and ep are independent of drop shape and are normalized
parameters which are the ratios of the electrostatic, rotational, and total energies of the sphere
of radius R, to its surface energy (charge, angular momentum, and total energy are conserved).

Thus ¢ = EYJ2E, en = EYJES, ex = E9JEL.

The parameter g is a measure of the size of the disruptive centrifugal forces compared to the
cohesive surface tension forces. Similarly, ¢ is a measure of the disruptive electrostatic forces.
The factor 2 occurs in the definition of ¢g so that ¢ = 1 corresponds to the condition of a sphere of
radius R, bearing the maximum charge determined by Rayleigh (1882). The energy terms for

the sphere are E? = 4nR3o,

1 1Q2
$= ;;;OQE?'F‘M% $E3 R,
1 502
0
By = 22M, Ry’

where E, is the undisturbed electric field in the absence of the drop, @, is the total charge on the
drop, M, the mass of the drop, and £ its angular momentum.
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COLLISIONS BETWEEN LIQUID DROPS 639

Specification of the numbers ¢, ¢g and ey, which are readily determined in the laboratory, will
delineate the energy characteristics of any given collision; the dynamical functions 4g, 4y and
Ay do not require discussion in the context of input parameters. If the drop pair possess radii
R and r, and U is the speed of approach along their trajectories, and if X is the impact parameter
measured in the centre-of-mass frame, then

[ 1 Q3

6= —|-— 5
4mey 16T R0

_ 5pR%S (R +1)8 U2X?
R 120 RE? ’

p R373 U 2 R2 + 72
ep = = + 5

60 R} R2

where R, = (R®+413)%,

2
+ane 7L

' T6no (I5a)

small-drop radius, 7/mm

9l-
g g
. &
® g
- ] Q.,
& 2
= 3
< s
& =
en [
St
& g

| | 1 I
0 1 2

large-drop radius, Rfmm

Ficure 1. The variation with drop radii of the rotational energy parameter, ¢, (above the diagonal) and total
energy parameter, ey (below the diagonal). The contours of rotational energy are expressed in terms of the
impact parameter, X.

For water drops falling at their terminal velocity in air, contours of the quantities ey and ey
(the former measured in terms of the impact parameter X) may be plotted as a function of the
independent variables R and r; these contours are displayed in figure 1. The range of these

parameters 13 0<ep < 1.5TX2 1<ep< 3.6

The lower limit of ey occurs when R > r, and upper limits for both ey and ey are determined
by the natural limits of drop size before aerodynamical breakup. The parameter ep peaks at
R = 1.7mm and r = 1.0mm, whereas the parameter e; peaks at R = 1.9mm and 7 = 0.8 mm.
It is evident that the number of collisions with parameters in the range eg, to e + deg, and ey to
ep +deq is a maximum where (e,, er) is stationary with respect to (R, r), whence from figure 1
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640 S. G.BRADLEY AND C.D.STOW

it may be seen that collisions are most frequent in the vicinity R = 1.5mm and 7 = 1 mm.
Clearly this region of interest should receive particular attention. Interactions involving drops
of radius less than 0.5 mm will involve little rotational or total energy and can be expected to
produce only stable coalescence or bounce, and are therefore of minor interest here.

N
e S
e
s
e >~
- stabilized N
- water Supply ~ signal
< ¥ ~ gonorator
~
T a 4} v
° \drop charge
\/
%
Xenon : |
strobe ?@ ¢ | diffusing screen I
L ’ |
™~ :
/ P & +
/ . ~
L ciné camera
~ single~frame advance I
v e
~ - N |
| |
~ ™~ | e g
~ l\ ~
s
A 3 S Y3
\ /\/
. P
\/

Ficure 2. A schematic of the experimental arrangement used to obtain the drop-collision photographs.

The electrostatic component is ignored in discussions of drop trajectory, since the value of the
parameter ¢ is usually of the order 10~7, but the equations of motion do not by themselves predict
drop stability after impact. Solution of the equations of motion follows from the insertion of
initial conditions, which provide values for 4g, 4y, and Ay, at the beginning of the interaction.
These initial conditions describe drop shape and rate of change of shape, and would be expected
to depend on the time at which the air film is ruptured. This is because no surface tension forces
exist between the impacting drops until the air film between them is ruptured and a liquid
bridge created. If this cohesive force is applied when the net motion is inward, coalescence is
likely to occur with less probability of subsequent disruption than if the net motion were other-
wise. Thus the delay in film drainage is intimately linked to drop stability and, since electrical
charges may be present, the influence of the parameter ¢, cannot be ignored in discussions of
drop behaviour after impact. The problem of film drainage is discussed in part IT of this paper.
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COLLISIONS BETWEEN LIQUID DROPS 641

THE DROP COLLISION EXPERIMENT

A schematic of the experimental arrangement is given in figure 1.2. Two streams of drops of
uniform size were produced using vibrating hollow-needle generators similar to that of Gunn
(1965a). Four sizes of needle, labelled A, B, C and D, were used giving six combinations of drop
size, namely AB, AC, AD, BC, BD and CD. Careful adjustment of the relative positions of the
drop generators and their relative phase of vibration (the latter using delay (1)) enabled repetitive
collisions to be set up for any value of the impact parameter X with the relative velocity at impact
equal to the difference in terminal velocities of the pair of drops generated. The time interval
between production of successive drops was held constant at 27.3 ms. This corresponded to a
drop-spacing to drop-diameter ratio of 10 for the smallest drops and 75 for the largest drops.
Investigations by Cataneo (1970) have indicated a maximum downstream distance of 50—-100
drop diameters over which the wake can be detected for drops falling at terminal velocity. In the
experiments described here, drop speeds at impact were always less than 50 %, and typically
309, of their terminal velocities, thus the drop separations used guaranteed that wake effects
could be ignored. This was not true of the experiments performed by Brazier-Smith et al. (1971)
where drop separation was of the order of only 2.5 diameters. There remains the problem that
drops have not achieved their free fall shape; this effect was not investigated.

Photography of an interaction sequence was facilitated by using backlighting through a
diffusing screen, the light source being a gated single-flash xenon tube triggered from a variable
delay (2) slaved to the drop generators. A Bolex RX5H16 cine camera operating in a single-
frame advance mode was also activated by delay (2) and was positioned so that the entire
interaction (to the point of break-up, if occurring) was in the field of view. The intensity of the
illumination was adequate for the use of Plus-X film (50 ASA) with a lens aperture of 8; even
with the large field of view employed, droplets of radius 50 pm were easily visible. Since the only
manual intervention required during filming was the incremental adjustment of delay (2)
between each flash, framing rates of better than 1/s were achieved.

For each different impact situation about 12 frames were exposed, the incremental delay
being changed by steps of 2 ms. The first two frames consisted of images of the drop pair before
contact and were used for the calculation of impact speed, U, and impact parameter, X. The
charge induced on the larger drop (by means of a Faraday cylinder) was then changed and a
further 12 frames taken as before. The effects of five values of induced charge from zero to about
2 x 1012 C were filmed in this manner. The sign of the induced charge used was always positive
since there is no reason to suspect a sign dependence. The smaller drop always had zero charge,
since preliminary experiments indicated that the magnitude of the difference in drop charges
influenced the collision rather than the total drop charge. Charge increments were made
approximately exponential so that a wide range of charges could be studied. The filming sequence
was repeated for each new value of impact parameter, about 13 such sequences (approximately
800 frames) being taken for each of the six drop pairs.

Table 1 gives data on the needles used and the drops they generated. The table gives the
inner and outer diameter of each needle, the range of drop radius that could be stably produced,
the mean terminal velocity of the drop, ¥, its fundamental period of oscillation, 7,, the time
constant for viscous damping of the oscillations, 74, and the average mass, m, of each drop.

Table 2 shows some of the properties of the six possible interactions. The relative terminal
velocity, AV, is calculated from the table given by Mason (1971). The ratio R/r has appeared in
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642 S.G.BRADLEY AND C.D. STOW

theories of drop instability (see, for example, Brazier-Smith et al. 1971), and R, is the radius of the
resultant drop should coalescence occur. The mass ratio (r/R,)® appears in equations describing
collisions in the centre of mass (c.o.m.) frame of reference and is also useful in describing the
distribution of mass resulting from drop breakup. The parameters ¢p and eg defined earlier are
seen to cover the entire region of interest (see also figure 1). Time scales of oscillation and of
breakup are indicated by 73, the period of oscillation of a drop of radius R, and by 7, the time
taken for drops to pass each other. It may be seen that the 2ms increment used in filming a
collision sequence is sufficiently small to allow a detailed study of deformation and rotation,
except in the case of glancing collisions with drop A. The rotational energy of the incident drop
pair is used to calculate w,, the angular frequency of rotation of a rigid sphere of radius R,, and
also to calculate wg, the angular frequency of rotation of the dumbell-shaped combination of
two rigid spheres of radius r and R. These frequencies indicate the rate at which the combined
distorted drop will rotate.

TABLE 1

needle A B C D

gauge 23 18 14 12

outer diameter Jcm 0.061 0.122 0.203 0.264

inner diameter/cm 0.030 0.081 0.152 0.203

drop radius/cm 0.05-0.07 0.09-0.12 0.11-0.16 0.13-0.18

Vel(ms™1) 5.2 6.8 7.7 8.0

To/ms 4.7 9.5 12.9 14.5

Ty/ms 70 170 260 310

m[mg 1.1 4.1 7.8 10.0

TABLE 2

interaction AB AC AD BC BD CD
rfcm 0.060 0.062 0.058 0.109 0.113 0.142
R/cm 0.097 0.115 0.130 0.153 0.166 0.172
AVy/(m s™) 1.7 2.3 3.1 1.3 1.4 0.6
R|r 1.6 1.9 2.2 1.4 1.5 1.2
Ry/cm 0.104 0.121 0.134 0.170 0.182 0.200
(r[Ry)? 0.19 0.13 0.08 0.26 0.24 0.36
ep 2.2 2.8 3.2 2.4 2.7 1.6
en X2 0.91 1.05 0.77 1.45 1.55 0.53
79/ms 9 11 13 18 20 23
7,/ms 1.8 1.5 1.2 4.0 4.0 5.2
Wy X 1[s71 961 803 601 566 535 268
0, X7fs71 579 564 487 309 299 131
V/(ms1) 2.7 2.7 2.9 3.1 3.3 3.6
v/(m s) 1.0 0.7 0.6 2.1 2.2 2.6
(1)) 2.5° 1.3° 2.9° 0.6° 2.6° 2.8°
& -17.0° —14.3° -20.7° -3.2° —4.0° —2.6°
Ul(m s™) 1.7 2.0 2.4 1.1 1.2 0.9
é 8° 6° 9° 8° 14° 17°

THE TRANSFORMATION AND REDUCTION OF DATA

The parameters of interest which can be extracted from the data are the impact parameter, X,
the sizes and relative velocities of drops both before and after the collision, and the shape-
dependent factors Ag and Ay (see equation (I 4)) during an interaction. Quantities which could
be obtained directly were the sizes and positions of undistorted drops, the approximate position
of the centre of mass, and the length and orientation of the major axis of distorted drops. While
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COLLISIONS BETWEEN LIQUID DROPS 643

the quantities size and length are reference-frame independent, position and orientation are
different in the laboratory and c.o.m. frames. Furthermore, the impact parameter, X, must be
measured in the c.o.m. frame and it is therefore desirable to transform all distances and orienta-
tionsinto this frame of reference. If the apparent impact parameter as measured from photographs
in the laboratory frame of reference is X, then the true impact parameter, X, is given by

X = X, cosd— (1 - XF)tsind,

where 8 is the angle between the differential velocity vector of the drops and the vertical.

None of the previous investigators has indicated how X was calculated. This is an unfortunate
omission, since substantial errors occur if X7, is used instead of X. The discrepancy islargest when
the interacting drops have similar fall speeds; in particular, X; may be of opposite sign to X,
indicating drop rotation in the wrong direction. A graph of X as a function of X7, is an ellipse of
eccentricity (1 —}tan?48)3.

Table 2 also shows the speeds and angles measured for the six interactions studied. ¥ and »
are the actual speeds of the larger and smaller drop respectively, at the moment of impact, and
@ and ¢ the angles of their individual trajectories to the vertical. The quantity Uis the differential
speed of the drop pair, so that ¢ is a calculated quantity given by either of the relations

Ucosd = Vcos@—vcos g,
Usind = Vsin @ —vsin ¢.

Measurements were also made of the lengths of the major axes of distorted drops. Although
such a measurement only describes the gross features of drop distortion, no more representative
measure is available in the absence of a suitable model for asymmetrical shapes.

THE EXPERIMENTAL ERRORS

The mean and standard deviation of the measurements of incident-drop size were calculated
from draughted images. The error varied from 3.8 %, to 6.5 9%, with a mean of 5.2 %,. Measure-
ments of drop size are therefore accurate to about 5 %, this error being considerably reduced
when grouping (radius classification) and calculation of marginal distributions are performed.
The error in the calculation of U and 8 was estimated from a number of individual calculations
performed for the AB interactions. The standard deviation in U was 3 %, and the error in § was
149, or about 1°. Since interactions were classified into five intervals of impact parameter,
corresponding to angles of contact of 0° to 90°, the error in & was not significant. Errors of the
order of + 5° were inherent in angle of rotation measurements. This was estimated by repeating
measurements in an unbiased fashion. Since data were again grouped for display purposes and
angles ranged from 0° to 180°, the measurement error was of little consequence. The largest
errors were undoubtedly those present in the measurement of distorted drops, though invoking
an ellipsoidal assumption reduces this error considerably. The drop sizes resulting from a par-
ticular collision were also scaled to conserve mass; this tends to compensate for any systematic
error in estimating drop size. As with other data, grouping is useful in limiting the influence of
any errors. The method of drop production was sufficiently consistent over 500 interactions that
negligible errors through variation of drop size and trajectory were introduced.

67 Vol. 287. A.
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644 S.G.BRADLEY AND C.D.STOW

DiscUSSION OF THE EXPERIMENTAL RESULTS
(a) Rotation of drops after collision

The angle of rotation (in the c.o.m. frame) is shown as a function of time, ¢, and of impact
parameter, X, for each collision combination, in figure 3; four basic kinds of rotation behaviour
were noted:

(i) For low values of X (head-on, or direct collisions) the drop oscillated and rotation was
minimal; if breakup occurred the larger product emerged from the base of the unstable drop,
and products and satellites formed in a single line.

160

80

s — — —

160

80

time/ms

Ficure 3. The angle of drop rotation in the centre-of-mass frame as a function of time and the range, j, of the
impact parameter, X, for the six interactions studied. Zero time is the moment of contact. ———, 0 < X < 0.2
(j=1); —— 02< X<04(j=2); —, 04 <X <06 (j=38); =+ , 06 <X <08 (j=4);
------ ,08 < X< 1.0 (j = 5).

(i) For higher values of X, rotation without breakup was observed to proceed at an almost
constant rate; no effects of drop oscillation on the rotation were noted.

(iii) For the intermediate values of X (as in (ii) above), rotation with breakup showed an
asymptotic approach to 90°, product drops having similar trajectories to the incident drops.

(iv) For high values of X (grazing contact), either drop rotation or shear generally resulted
in breakup. Shear is defined here as contact and breakup with high rotational energies without
rigid rotation. Since the angular velocity at contact is significantly different from that of two
rigid spheres with the same angular momentum, either drop distortion or disruption must occur
to conserve angular momentum. The rate of distortion of drops by capillary waves is limited
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Phil. Trans. R. Soc. Lond. A, volume 287 Bradley & Stow, {late 1

Ficure 4. A sequence of frames showing the collision of a drop of radius 1.7 mm
with one of radius 1.2 mm. The impact parameter, X, is zero.

(Facing p. 644)
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Phil. Trans. R. Soc. Lond. A, volume 287 Bradley & Stow, plate 2

Frcure 5. As for figure 4 but with the impact parameter, X, set to 0.35.
The series exemplifies disruption by rotation.
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Ficure 6. As for figure 4 but with the impact parameter, X, sct to 0.90.
The series shows disruption by a shearing action.
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COLLISIONS BETWEEN LIQUID DROPS 645

(see 73 in table 2) and so disruption via shear occurs for collisions with high initial rotational
energies. For such collisions the reflexion angle, or total rotation after impact, is approximately
180°. Figures 4—6, plates 1-3, show examples of a collision sequence between drops of radius
1.2mm and 1.7 mm for the cases (i), (iii) and (iv) respectively.

3 x

Ficure 7. The geometry of an inelastic collision between two solid spheres of different size.

Theoretically, the angle of rotation should increase monotonically with time, and summation
over a number of interactions should not affect this monoticity. The fluctuations which are to be
seen in figure 3 are due to either small differences in the interactions comprising a given sequence,
or, more commonly, to the occurrence of contact at a slightly different time; either factor can
be expected to cause fluctuations at the end of each curve. The curves of figure 3 were generated
from averages over random samples of about 5 collisions for each range of X, with the exception
that for the interactions AB the curves for the upper three ranges of X were derived from a much
larger sample. As expected, the end fluctuations disappeared. The decrease in the angle of
rotation for large ¢ is attributable to the effect of gravity on the drop trajectories. The rates of
rotation measured compare favourably with those predicted by the quantities w, and wg of
table 2, and show clearly the marked decrease to be expected from that for energetic collisions
(AB) to that for low-energy collisions (CD).

The shapes of the curves of figure 3 may be compared with those predicted by a model of the
inelastic collision between solid spheres. Figure 7 summarizes the conditions before and after
collision has taken place in the c.o.m. frame of reference. In the figure, 7 is the angle of incidence
at the moment of collision, {y, and 7 is the angle of reflexion; the quantity, , is the sum of the
radii of the impacting spheres.

cota—coti = (VI-V9) (t—tc)[asini |t < 5|, (I6a)
cotf—cotr = (;—=V,) (tg—1t)[asinr |t < ig], (1 6b)

where f = i+7—a, and the coeflicient of restitution, e, is introduced through the equations
cotr = ecoti and (V—V;) = (V9—V9) (sin%i +ecos?i)t.

Figure 8 shows a plot of equation (I 6) with the quantity « as ordinate, and the quantity
(Vi =V,) (t—tc)a as the abscissa. Curves are shown for selected values of the angle of incidence,
i, and coefficient of restitution, ¢; they show a marked resemblance to the experimentally

derived curves of figure 3.
67-2
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646 S.G.BRADLEY AND C.D.STOW

When breakup occurs, there is opportunity for the separation of charge between the drop
products. Many workers have discussed these electrical cffects and it clear that the majority of
charge scparating mechanisms are sensitive to the electric field vector during collision and
breakup. Their arguments indicate that the orientation of the two-drop system is equally impor-
tant, yet experiments to investigate charge exchange (such as those of Jennings & Latham
(1971)) have ignored this effect. The angle of the axis of the distorted drops to the vertical demon-
strates a marked difference in the behaviour of low energy collisions and high energy collisions.
For the collisions AB, AC and AD this angle never exceeded 10° whatever the value of X. On
the other hand, angles greater than 40° proved possible for moderatc and large values of X for
collisions BC, BD and CD. The implications of these data in the context of charge-exchange
theory will not be discussed here.

180 T T T T T

angle of rotation, afdeg
-
(3]
[e]

[o2]
(=]

0
—4 0 4 8

non-dimensional time with respect to thc moment of contact

Ficure 8. The variation with time of the angle a between the centres of two rigid spheres and their initial line
of motion. Curves are shown for sclected values of the angle of incidence, i, and of the coefficient of
restitution, e.

(b) Charge-dependent distributions

Neither the rotation of the two-drop system nor its mechanical distortions were found to be
at all sensitive to electrical charge, which was therefore discarded as an input parameter.
However, certain distributions describing important properties of the products of collision were
found to be charge-dependent and are discussed below. The values of the charge, Qy, placed
upon the larger drop of a given pair of drops are given in table 3 together with the calculated
value of the charge parameter ¢ of equation (I 5). These values of charge are referred to below
in terms of the index, K, which varies as an integer from 0 to 5 for each interaction. The upper
limit of charge was chosen to not excced that usually found on atmospheric precipitation.
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COLLISIONS BETWEEN LIQUID DROPS 647

(¢) Product radii for energetic collisions

Drop sizes were classified according to equal-width radius-ratio intervals; that is, according
to the ratio r/R,. This device facilitated the comparison of data from the different interaction
groups. Since drops were somewhat distorted following breakup, the radius of the equivalent
sphere for each drop was calculated assuming that the drops were ellipsoids of revolution. This
method required the measurement, therefore, of both the major and minor axes of each drop
and was used for all but the smallest products. The orientation of a drop and its behaviour after
breakup allowed an unambiguous determination of whether a given drop was prolate or oblate;
deviations from the ellipsoidal shape were common.

TaBLE 3
index K
r A N

interaction parameter 1 2 3 4 5

AB Qx x 10-12 C 0 0.13 0.27 0.54 1.08
eg % 10-8 0 4 14 57 230

AC Qg x1012C 0 0.16 0.32 0.64 1.28
e 10-8 0 3 14 55 221

AD Qxx 102 C 0 0.18 0.36 0.72 1.44
e x 10-8 0 3 13 51 206

BC Qx x 10712 C 0 0.21 0.43 0.85 1.70
e % 10-8 0 2 9 34 137

BD Qy x 1022 C 0 0.23 0.46 0.92 1.84
e x 1078 2 8 34 134 536

CD Qg x 10712 C 0 0.19 0.38 0.76 1.52
e % 10-8 1 4 17 69 276

The charge marginal frequencies (i.e. those summed over all X for a given drop charge) of
drop radius ratio are given for the interactions AB, AC and AD in figure 9. Coalescences are
included as a narrow spike with unit radius ratio. Distributions were found generally to be tri-
modal with two of the modes corresponding roughly to the radius ratios for the incident drops
(shown as dotted lines), and the remaining mode at low values of radius ratio attributable to
so-called satellite drops. The presence of the latter mode was not evident from a visual examina-
tion of photographs; in this respect the use of equal-width radius-ratio intervals proved
fortuitous.

The mode of the largest products was found to be distinct from the other two and has a peak
very close to that of the larger incident drop. On the other hand the position of the central mode
corresponded to a somewhat smaller radius than that of the smaller incident drop, and suggests
that some of the mass of the smaller drop is transferred both to the larger incident drop and to the
satellite drops. (The total mass of satellites did not exceed 10 9, of the total mass on any occasion.)
While there were clear differences between the distributions for the collisions AB, AC and BC,
the effects of variation in drop charge were slight.

Impact parameter marginal distributions (i.e. those summed over all K for a given X) for
the collisions AB, AC and AD are shown in figure 10. The form of the distribution is similar to
that for the charge margins. As before, the shift of the central peak with an increasing energy
of collision was evident, but the shift was found to diminish with an increase in the impact
parameter X. These data suggest that the mass loss of the smaller drop is greater for direct
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648 S. G.BRADLEY AND C.D.STOW

collisions where a higher degree of drop contact and mixing is possible. A further effect to be
noted is that the peaks of each distribution became narrower as the value of X was increased.

Overall radius-ratio distributions are shown in figure 11 for the interactions AB, AC and AD.
Here it shows clear evidence of the shift of the central peak with increasing energy of the collision,
the shift coinciding with a narrowing of the distribution of the largest products.

AC AD
l

05k | - | |
ow . |
l

0.5 |
=y
0 =

|

AT

I
0 L 1B
| ; | | | |
o5k | ! | ! | |
e T
. | L—, — 1 = |
0 04 0.8 0 0.4 0.8 0 0.4 0.8

radius ratio

Ficure 9. Charge marginal distributions of the number of drop products per radius-ratio interval and per collision
as a function of the drop radius ratio. The charge index, K, is defined in table 3. The dashed lines indicate
the radius ratios of the incident drops.

(d) Distributions of mass and mass transfer in a two-body system

Since few satellites were produced by the collisions BC, BD and CD, these interactions were
amenable to comparison with the following simple theoretical model.

In many cases, drop collisions result in the formation of large product drops, similar in size to
the incident drops, plus several very much smaller satellite drops. In such instances the distri-
bution of product-drop mass can then be treated separately from the distribution of satellites.
The only previous investigations of product-drop size have been those of List, MacNeil &
McTaggart-Cowan (1970) and McTaggart-Cowan & List (1975). They noted that products
were distributed as two superimposed Gaussian curves centred on the radii of the impacting

=1

(921
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Ficure 10. Impact parameter marginal distributions of the number of drop products per radius-ratio interval
and per collision as a function of the drop radius ratio. The impact parameter index, j, is defined in the
legend of figure 3. The dashed lines indicate the radius ratios of the incident drops.
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Ficure 11. The overall distribution of the number of drop products per radius-ratio interval and per collision
as a function of the drop radius ratio. The incident drop radii are indicated by the dashed lines.
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650 S. G.BRADLEY AND C.D.STOW

drops. While this describes the general form of product distributions, it neglects a fundamental
relation, namely that the masses of the two drops formed as the major products, m, and m,,
must satisfy the condition my+my = M,

where M, is essentially the combined mass of the incident drops.

K=1 i 2
0.8

0.4

I
0.4} ’ s | -
l

number of products

|
oLy il

0.8} - L

T
T
T

0.4

L]

0 05 0 05 0

Ficure 12. The charge marginal distribution of the frequency of production of lone drop pairs of a given mass
ratio for the interactions BC, BD and CD. The dashed line shows the mass ratio of the incident drops.

If the overall mass distribution, ¥(m), is considered to consist of two superimposed distri-
butions, ¥;(m) and ¥4(m), arising from pairs of drops of mass m, and m, respectively, then

(m) = ry(m) +9ry(m).
It is convenient to compare interactions by normalizing m with respect to M, so that if
m[M, = x, then since drops are produced in pairs

0

() = px) +(1-x).
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A distribution which nearly satisfies the conditions ?(x = 0) = ¥(x = 1) = 0 and agrees well
with the observations of List e al. (1970) and with the results of the experiments described here is

¥(x) = (1-E) (2n)bo [exp{—§(x — p)*0%} + exp{— $(x — 1+ )*[0?}].

j=1 2 3 4 5
0.8 - - r ~
(/:f?:] i i i l i | i !
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o 23] Ficure 13. The impact parameter marginal distribution of the frequency of production of lone drop pairs of a
e p
| given mass ratio for the interactions BC, BD and CD. The dashed line shows the mass ratio of the incident
E @) drops.
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Charge marginal distributions of mass ratio are shown in figure 12; only half of the sym-
metrical distribution has been plotted. The distribution is essentially unimodal, with a peak close
to the value of the mass ratio of the incident drops. The mean and standard deviations # and o
of each distribution were found from the second and fourth moments of ¥(x). These data appear
in table 4. In contrast, the impact parameter marginal distributions shown in figure 13 show a
marked dependence upon the impact parameter, X. The distribution is narrower for glancing

68 Vol. 287. A.
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distribution -

(see figure 12) /]
K=1 1.07
K=2 1.09
K=3 1.18
K=4 1.21
K=5 1.19

impact parameter
marginal
distribution

(see figure 13)

j=1 1.27
i=2 1.10
j=3 1.25
=4 1.14
ji=5 1.04

The quantities # and o have been normalized to permit comparisons by dividing actual values by [r3/R34-73]

TABLE 4
interaction
BC BD CD
A Al (& A A} C A
o 3 o Y
0.34 1.11 0.32 1.00
0.17 1.08 0.17 0.81
0.19 1.15 0.20 0.83
0.27 1.02 0.26 0.93
0.33 0.95 0.16 1.01
0.38 1.01 0.31 0.91
0.36 0.87 0.01 0.86
0.18 1.18 0.29 0.87
0.17 0.95 0.23 0.93
0.14 1.03 0.18 0.97

(= 0.2656 for BC; 0.2398 for BD; 0.3600 for CD).
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Ficure 14. The overall distribution of the frequency of production of lone drop pairs of a given mass ratio for

0.25

mass ratio

0.5

0.16
0.19
0.06
0.21
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0.28
0.11
0.18
0.12
0.13

the interactions BC, BD and CD. The dashed line shows the mass ratio of the incident drops.
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COLLISIONS BETWEEN LIQUID DROPS 653

collisions than for direct collisions (this conclusion was confirmed by statistical tests not shown
here). No impact energy dependence is evident in these distributions.

However, consideration of the overall distributions of mass, given in figure 14, does suggest
a dependence on the energy of the impact that is not otherwise apparent. There is a clear shift
of the distribution mode away from the value of incident-drop mass ratio as the impact energy
decreases; such a trend indicates an increase in mixing and mass exchange.

0.8k AB | AC | AD
=04} - -
=
8 Py /\J Ty
.8 4 q
3] 1 L L } Lot 1
g O :
(5]
3 .
<t BC BD CD
S 08 '/\/ -
&
= L L L
8 /——v—/ '\/\——‘
0.4 - =

1 1 L 1 1 1
123 4 5 1238 4 5 123 4 5
drop charge index, K

F1oure 15. The variation of drop coalescence efficiency, E, with charge index, K,
for the six interaction types studied.

0.8k AB L AC L AD
Q0.4 -
> L i
% \
-8 0 L 1 1 I 1 | 1
¢
(5]
Q
& CD
& osl BC | BD
<
S oa4f \ — —
1 1 1 1 ol 1 1 1 1 1 1 1
0 04 0.8 0 04 08 0 04 0.8

impact parameter, X

FicUrE 16. The variation of drop coalescence efficiency, E, with impact parameter, X,
for the six interaction types studied.

(¢) The frequency of coalescence

The effects of electric charge, @, and the impact parameter, X, were investigated with the aid
of figures 15 and 16. Coalescence frequency generally decreased with increasing impact para-
meter, although for the collisions AC, AD and CD, there is a peak in coalescence frequency at
an intermediate value of X. The dependence upon drop charge varied less predictably with

68-2
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654 S. G.BRADLEY AND C.D.STOW

collision type, thus collisions AD, BD and CD show very little dependence upon drop charge,
whereas a slight dependence is evident for collisions BC.

When drops were charged the collisions AB and AC exhibited an enhanced coalescence fre-
quency. Also coalescence frequency was higher for the low-energy collisions.

SUMMARY

A suitable set of parameters has been defined to describe a two-drop interaction. The set
comprised the quantities: total charge, angular momentum, and total energy, and these could
be normalized in a convenient way to compare interactions. The range of the parameter values
defined was limited to those likely to occur in atmospheric precipitation and it was noted that
previous investigations have, unfortunately, not adequately covered the contingencies. The
influence of drop charge on the collision dynamics was found to be negligible.

Measurements of product drop sizes have been made which result from interactions of interest
in the theories of the generation of raindrop spectra. Coalescence efficiencies have been obtained
by statistical treatments which accord with naturally occurring collisions; these data are in
contrast to previous experiments by other workers where a model of breakup has been necessary.

The effect of drop charge and impact parameter have been investigated separately and serve
to yield the first qualitative evidence of the effect of drop charge upon a wide range of collision
types. Nevertheless, the discussion of the results serves only to outline the gross features of the
data. Theories of air film stability and the electrohydrodynamic stability of water drops are
discussed in parts IT and III.

II. AN INVESTIGATION OF AIR FILM STABILITY
AND DRAINAGE BETWEEN COLLIDING,
ELECTRICALLY CHARGED DROPS

A theory is developed for the rate of expulsion of the viscous layer trapped between
colliding drop surfaces. The theory allows for general interface movement and reduces
to the classical cubic film-thinning equation when the interfaces are rigid, finite,
parallel disks. It is shown that colliding drop surfaces will generally have a time-
dependent curvature, and an expression for that curvature is derived. A simple
analytical treatment of drop deformation agrees well with more complex numerical
treatments and with experiment. Equations are normalized so that drop deformation
may be evaluated as a function of time for any pair of equally sized drops provided the
Weber number is specified. The generalized thinning equation is integrated together
with the drop deformation equations and the surface curvature equation, enabling a
critical Weber number for drop coalescence to be determined. The requirement for
coalescence of neutral water drops colliding in air is given approximately by
R < }(8We+1), where R is a drop radius in millimetres and e is the Weber number.

Enhanced film thinning when drops are charged cannot be explained by the defor-
mation and acceleration of approaching drop surfaces: electrostatic forces between
parallel interfaces are found to be very small. A theory for the stability of oscillating
charged surfaces predicts drop electrification criteria having the correct form and
agreeing to within an order of magnitude with observations.
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INTRODUCGTION

Many workers, for example, Gillespie & Rideal (1956), Charles & Mason (1960), McKay &
Mason (1963) and Hartland (1967), have shown that the delay between the impact of two drops
and the formation of a liquid bridge joining them is attributable to a viscous film composed of
the surrounding medium. This layer separates adjacent drop surfaces and thins slowly until a
critical thickness of between 500 At and 100 A is reached. Hodgson & Lee (1969) have shown
that Van der Waals’ forces overcome electrical double-layer repulsion at this separation and
rapid rupture of the film ensues. Delay times for water drops colliding in air have been measured
by Owe Berg, Fernish & Gaukler (1963), Jayaratne & Mason (1964) and by Nelson & Gokhale
(1973). Results were contradictory with respect to the influence of drop impact speed, although
all experiments indicated a strong dependence of delay times on electrical forces. Jayaratne &
Mason found that for droplets of greater than 125 um radius colliding with a plane water surface
there was a critical impact speed above which coalescence would occur and below which
bouncing took place. Coalescence occurred more readily if droplets were charged or if an electric
field was applied. Gunn (1965 ) found that bounce occurred atimpact speeds of less than 0.4 m s—1
for pairs of drops of 1 mm radius, and that an applied field of 4 x 103V m~! guaranteed coales-
cence. Sartor & Abbott (1968) observed collisions between water drops of 400 and 375 pm radius.
Coalescence always occurred for impact speeds of less than 0.21 m s~ and for speeds greater than
0.35m ™. Between these limits bouncing always occurred unless suppressed by a field exceeding
2.5 x 103V m~! or by the drops carrying equal and opposite charges in excess of 6 x 10-14C.
In a later experiment, Sartor & Abbott (1972) examined collisions between drops of equal size
with radii in the range 100-800 pm. Drops of radius less than 250 um always coalesced because
the high surface tension forces limited flattening of drop surfaces on impact and air could be
forced from between the drops more readily. For larger drops, coalescence occurred at either
low speeds (with long contact times allowing completion of film drainage) or at high speeds (with
correspondingly large forces to expel the air). Impacts at intermediate speeds resulted in bounce.

The present paper seeks to explain the above observations by combining theories of film
drainage, drop distortion, and electrical influence. Discussion is limited to the direct impact
between drops of equal size, although some of the results may be extended to other situations.

THE THEORY OF SQUEEZE FILM DRAINAGE
(@) Interfaces with fixed profiles
In an investigation of the lubrication of bearings, Reynolds (1886), derived a single differential
equation relating pressure, interface velocities, and film thickness. This approach has not been
applied in recent investigations of the drop collision problem but will be used here. The form
of Reynolds’s equation which is applicable to symmetric collisions between drops is

107,01 . (10 d
—7'5;[;1 7’5;] = 12/1,{—757: (rush) +at'},

where the position of the interface is defined by z = 4, p is the pressure within the film, x is the
coefficient of kinematic viscosity within the film medium, and us is the radial velocity of the
interface. The derivation of this equation assumes that the mean molecular path in the film is

(IT 1)

t 1A =0.1nm = 10~ m,
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656 S.G.BRADLEY AND C.D.STOW

much smaller than the film thickness; this assumption is valid for the early rate-determining
part of the film drainage process. Equation (II 1) is first integrated to obtain p(r). Equating the
force F on each drop surface to the integral of p(r) over the area of that surface gives

_ 3mpatdh 24mp (o o
p=-Sg ] ([ -

Equation (II2) is equivalent to that derived by Murdoch & Leng (19771) who assumed that the
radial velocity s is confined to a region within the drop and close to the surface. Using a second-
order theory they found that the expression for the thinning rate involved terms in A2. On the
other hand, Foote (1971) assumed that us was proportional to r under which condition equation
(IT 2) reduces to the form

dr/dt = — 2Fh3|(3nuat) — 2us (a)hfa. (I13)
Experimental observations have not substantiated either model for the drop surface velocity,
and no realistic theoretical arguments exist for their support.

(b) Interfaces with time-dependent curvature

In the models described above it is assumed that the film interfaces are plane, parallel disks.
In practice, however, the film near the point of drop impact will have thinned substantially
more than the disk edges. The shape of the adjacent drop surfaces is therefore coupled to the
rate of flattening of the drops, and the consequent interface curvature enhances film thinning
because of the reduced tangential stress.

If the radius of curvature of the interface is given by #(¢), then for a disk radius ¢ < # the film
thickness is well represented by the parabolic profile

h = hy+7%1, (I14)

where £, is the film thickness at the axis of symmetry. The radial surface speed us, is found by
requiring equation (IT4) to represent the interface at all times. Integration of equation (II1)

ield
nOW yleies dh,  2FR} ( az)_lzodn

F T ———3nﬂa4 +’I_7—/Z—(; -ﬁm (I15)

Equation (II5) has the same form as equation (II3) with a term linear in %, dominating the
right hand side for small film thickness. There is a firm physical basis for the derivation of
equation (II5).

DROP DEFORMATION

The deformation of impacting drops has been studied numerically by Foote (1975), but this
complicated treatment gives little insight into the physical processes involved. With the same
coordinate system as in the previous section, the acceleration of the drop centre of mass, z, is

approximately d22,/de® = pra| M, (I1 6)
where M is the mass of the drop. For small interface curvatures the film pressure p is closely

approximated by the drop internal pressure. This is substantiated by the calculations of the
pressure field by Foote (1975). Equation (II 6) may therefore be written as

d2ze/de2 = 3Ta[2pR?, (11 7)
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COLLISIONS BETWEEN LIQUID DROPS 657

where T is surface tension, and R is the radius of the drop of density p. An examination of the
photographs of drop shapes obtained by Bradley (1975) and discussed in part I of this paper
suggests that the distance from the drop centre to the edge of the disk is approximately equal to

R throughout the collision and therefore
2344 = R2. (118)

0.8 —

ey

’2
+

0.4 . -

|
0 0.4 0.8
a’?

FIGURE 17. A test of the linear relation between normalized square of the centre 0. mass coordinate, zg2, and the
normalized square of the film interface radius, a2 Data points are derived from Foote (1975). ®, We = 0.16;
+, We = 1.42.

The accuracy of equation (I 8) is confirmed in figure 17, where a plot of (z,/R)? against (a/R)?
derived from data published by Foote (1975) has the expected linear form; it should be noted
that a different linear relation is followed after the maximum drop distortion has been achieved.
Equations (II7) and (II 8) may be normalized by writing

zy = z,/R, @ =a|R, ¥ = wt/2r,
where w = (8T|pR%)}
is the angular frequency of the fundamental free oscillation mode of a drop of radius R. The

resulting differential equation is
d2zg[de'? = §n2(1 —z?). (I19)

At t = 0 the drop centre of mass approaches the origin with speed V3 and hence

dzp/dt’ = —2nVa/wR

— — in(2pRVY/ Y}
= —1inWeb, (I110)
where We is the Weber number for the collision. The initial conditions are therefore
zp=1, dz)/dt’' = —-inWet at ¢ =0. (I111)
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Ficure 18. The variation of normalized interface radius with time for
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COLLISIONS BETWEEN LIQUID DROPS 659

Equation (IT9) may readily be integrated by using a fourth-order Runge-Kutta method and
@' derived from equation (II 8); the results are plotted in figure 18.

The curves for figure 18 agree well with those of Foote (1975) for times prior to maximum
deformation, although for longer times drop distortion is overestimated for large We and under-
estimated for small We. The maximum radius of deformation is plotted as a function of the
Weber number in figure 19.

TABLE 5. TYPICAL VALUES OF PARAMETERS IN THE WATER-IN-AIR SYSTEM

typical value

Thickness h 106 m
Interface radius a 2x 104 m
Pressure ¥4 103 Nm~2
Radial velocity u 2x 101 ms1
Normal velocity v 103 m st
Viscosity )2 1.7%x 1078 N s m~2
Force F 104 N
Density p 10® kg m—3
Surface tension T 7.2x 102 Nm
Radius of curvature i 2x10° m
Reynolds number Re 10-2
Weber number We 5x10-1
I
bounce
0.8 -
0.4 pm
g 0.25
g -
a4
g coalescence
£
S 04 -
Q,
] 0.2
S
- — 01
| | |

0 ' 1 2
Weber number, We

Ficure 20. Comparison of the theoretically predicted minimum film thickness (solid lines) with experimental
observations of the limiting Weber number required for coalescence. 0, Gunn (1965); ®, Sartor & Abbott
(1968); +, Sartor & Abbott (1972).

INTEGRATION OF THE THINNING EQUATIONS
Equation (II5), which describes the rate of change of film thickness with time, may be
integrated to obtain a relation between film thickness and time provided R, , and dy/d¢ can be
calculated. The force acting on a drop is the product of drop mass and the centre of mass
acceleration given by equation (IT9). If the edge of the disk is defined as a region of constant
thickness & — Ay, d(h—ho)[di =0

ada [a\2d
- 27-732—(;7) -alg (I1 12)

69 Vol. 287, A,
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660 S.G.BRADLEY AND C.D.STOW
from equation (IT4). Hence dy’ _ (77' da’
ar=2(5) 3 (L 13)

where 4" = 5/R is equal to unity when ¢ = 0. Equation (II 5) may now be integrated and the
minimum film thickness /%, found for various combinations of We, R and p T[u?. For water drops
colliding in air, typical properties of the system are given in table 5.

The minimum film thickness is shown as a function of drop radius and Weber number for
water-in-air collisions in figure 20; also shown in the figure are the experimentally determined
critical values of We which define regions of bounce or coalescence. Film rupture at film thickness
of between 0.30 and 0.25 pm is in good agreement with observation, thus there is evidence that
this model is satisfactory from both the qualitative and quantitative point of view. Therefore,
the criterion for coalescence is given approximately by R < % (3 We+ 1) mm.

THE ELECTROSTATIC FORCE BETWEEN COLLIDING DROPS
(a) Drop deformation before impact

If colliding drops are charged or are immersed in an external electric field, the electric field
between the drops increases as they approach and the rate of drop distortion due to electric
stress may be calculated approximately using the method of Brazier-Smith (1971). Hence, for
drops which are initially spherical and of radius, R,

d2y/dr® = n2%E2R/2T, (I1 14)

where 7 is the ratio of major and minor axes of the distorted drop, € is the permittivity of the
surrounding medium, and E, is the electric field at the pole of a drop. If the drop volume is
conserved, y = («/R)%, where o is the length of the major axis. The rate of change of normalized
drop surface velocity can therefore be calculated from equation (II 14) and this quantity can be
expressed as a rate of change of local Weber number. The resulting expression is

d Wefdl' = —4eE2ZR[(3 We T), (I1 15)

where &' = &[R. Equation (II 15) may be integrated by using the field-intensification results of
Davis (1964) to give, approximately,

We? = Weg—8eEZR{3(K — hy) +1n (I [k)}3 T,

where E, is the strength of the uniform applied electric field at large distances from the drops,
and We, and hy are the initial values of Weber number and normalized drop separation respec-
tively. For water drops of about 1 mm radius, and for an applied field of 10*V m~?, the predicted
change in We is only about 10~2 before the effect of viscous film flow becomes important. Con-
sequently, deformation of the drops before impact will only be effective in varying the local
Weber number for drops approaching with very low We values or for cases of high electrification.

(b) The electrostatic force across the film

The electrical force between flattened drop surfaces may be calculated by using methods
suggested by Foote (1971). For parallel surfaces with charge density o the force per unit area
normal to the surfaces is o2/2¢. The total force over a surface of radius ¢ is about two orders of
magnitude less than forces calculated from equation (II 6), when drop charges are sufficient to
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COLLISIONS BETWEEN LIQUID DROPS 661

cause coalescence; these charges are much smaller than those required to deform the drop surface
substantially.

If the drops are situated in an external electric field, the shape of the two-drop system may
be assumed to be that of the prolate spheroid, as shown in figure 21 with major and minor
semiaxes « and f respectively. The coordinate, £, in a prolate ellipsoid coordinate system &, 6, {

prOV].deS that = a(az_lgz)_%.

E,

Ficure 21. The approximation of the two-drop system by a spheroid.

Smythe (1950) gives the potential due to an external electric field E,, parallel to the major
axis, as V = Ey(a2— B2 £0{1 — (arcoth £ — £-1)(arcoth £, — £571)}.
The surface charge density may be calculated from
o=—eVlV-p,

where # is the unit surface normal. The charge on the exposed surface of each drop is found by
integrating o over 6. An equal and opposite charge of magnitude

Q = n (a2~ B ¢Ey (€ arcoth £, — 1)1

is therefore distributed over the parallel film surfaces. Since o ~ 2z, and g ~ R, the factor
(a2 — B?) (£yarcoth &, — 1)~ varies between 5.8 R? and 3 R? and therefore

Q ~ 4neR’E,.

Hence a field of 2.5 x 103V m~? produces interface charge densities equivalent to those present
if the drops carry equal and opposite charges of 4.4 x 10-14C (cf. 6 x 1074 C reported by Sartor
& Abbott, 1968). The electrical forces produced by charges of this magnitude are too small to
explain the observed enhanced coalescence.

INSTABILITY OF ELECTRIFIED FILM SURFACES

The stability of the film surfaces under the influence of electrical and surface forces may be
studied by closely following the method used by Vrij (1966), who attempted to show how very
thin films finally collapsed due to Van der Waals forces. Rectangular Cartesian coordinates
%, y, z are used and the film is assumed to be square with sides of length 24. Since the film is
essentially flat and much thinner than the diameter of the surfaces, discarding cylindrical

symmetry in the theory of random surface fluctuations should cause negligible error.
69-2
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662 S.G. BRADLEY AND C.D.STOW

The upper and lower surfaces are labelled 1 and 2 and have mean positions z = fand z = 0
respectively. The electrostatic potential energy per unit area, P, is
P = —¢V?[2h,

where V is the potential difference between the two interfaces and % (x,y,¢) is their separation.
The combination of electrostatic and surface potential energies is

W= f f TdS - f f Pds
surfaces 1, 2 surfaces 1, 2

where d§ is an elemental area of the upper or lower surface given by
dS = {1 + (0z[0x)2 + (3z[oy) 2t dx dy
or for small fluctuations in film thickness,
dS ~ {1+ (0z/0x)? + % (0z[0y) %} dx dy.
The electrostatic potential energy per unit area may be expanded in a Taylor series about its
value for mean thickness /:
P(h) ~ P(k) + (dP[dh); (h—k) + % (d2P|dA2); (h—F)2.

The change in potential energy due to surface fluctuations is therefore

o o G+ G+ ), o0+, -

The term in dP/d% does not contribute to the integral since the mean of & — £ is zero. Furthermore,
the surface energy terms may be separated into components z, + z,, representing bending of the
entire film, and components z, — z,, representing thickness fluctuations. The energy change for
thickness fluctuations, AW, is therefore

> [ [rl@) @) o) -

The film thickness may be written as the sum of its Fourier components:

h=h+ +Ew +Zw H,,, exp {ik (mx +ny)}, (I1 16)

m=—n=—0uwn

where & = n/a and i = (— 1)} The combination of a wave m in the x direction with a wave z in
the y direction results in an energy change

Won = 402 (Hy) 2L TR (m 1) +  (Q2PJ A% .

An m,n wave will therefore cause a decrease in potential energy if (d2P/dA?); is negative and if

2> Ag (I1 174)
where A = 2k (m2+n2)% (I1178)
and Ao = {— 22 T}(d2P/dA2) . (IT 17¢)

Fluctuations with wavelength A satisfying equation (II 17) will grow in amplitude and the
film will be unstable. The further development of the instability is uncertain because the analysis
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COLLISIONS BETWEEN LIQUID DROPS 663

above has ignored the effects of the kinetic energy and viscous damping in the air film; however,
this paper is only concerned with the onset of instability.

The Reynolds’ equation now contains terms describing fluctuations as well as those describing
mean film drainage. Because the equation is linear the two contributions may be separated and,
in Cartesian coordinates,

o (02Ap  O2Ap di
3 — - 1
h (ax2 + ayz) 12‘“dt‘ (I118)
T I I
15x1072 C
0.8 -
g —_— 1o
£
& ]
E
T 04k 5x 107 |
- - ]
&
S _
~ Q. =107C
| | |

0 ' 1 2
Weber number, We

Ficure 22. Critical drop charge for coalescence as a function of drop radius and Weber number.

The pressure change arising from fluctuations on both interfaces is given by
Ap = KT+ 2A(0?/2¢), (I119)

where K is the difference of surface curvatures

K ~ — (0%h/0x2 + 0%h[0y?). (11 20)
. dpP dP d2pP dp
Since A(0?[2¢) = A (aﬁ) A {(a—ﬁ)ﬁ+ (El_/z?),; (h— E)} - (a—};)h
substitution of equations (II 19) and (II 20) into equation (II 18) yields
dh d2P\ (0%h 0% 0% 0% 0%
37 = (1o [2(s), (G 5) ~ 7 e+ o ) S
Substitution of equation (II 21) into equation (II 16) gives
dH,,,|dt = — H,,, (k*[12p) [2 (d2P[dA?); k2 (m? +n?) + Tk* (m? 4 n?)?]. (11 22)
Hence H,,(t) = H,,(0)exp (¢1),

where, from equations (II22) and (IT17),
1)1 = (4n*Th3[3uA?) (A2 —A~2).

If A > A then 7 > 0 and a fluctuation of wavelength A will increase exponentially with time.
The most rapidly increasing fluctuation is that for which 7 is a minimum, and A = 4/2 A.. If
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664 S. G.BRADLEY AND C.D.STOW

2a > A¢, a fluctuation with A > A, always exists and the inequality can thus be used as an
approximate stability condition. This condition may be written as

B3 < 2¢a?V?[n2T.
Hence h < 2ea?EE[n®T or h < Q%[(2n%a?T).

By using calculated minimum values of 4 and corresponding values of 4, the minimum drop
charge, Q. required to initiate coalescence may be calculated and plotted as a function of R
and We; this is shown in figure 22. The drop charges are much higher than those found experi-
mentally but this is not surprising if one considers that the stability criterion is only an approxi-
mate one. The form of dependence of @ on both R and We, however, agrees with experiment.
Since . is almost independent of We, increasing drop charge above a critical value will cause
drops of a particular size to always coalesce on impact, regardless of impact velocity. This
prediction is in agreement with results of Gunn (1965 4) and Sartor & Abbott (1968) who found
that bouncing could always be suppressed by exceeding a certain critical drop charge or applied
electric field.

SUMMARY

The stability of the film trapped between colliding drops has been examined for both neutral
and electrified cases. The stability of the film for neutral drops is found to be closely linked to
drop deformation. A simple theory for drop flattening on impact allows drop deformation to be
modelled and the minimum film thickness to be found. Predicted relations between minimum
thickness, drop radius, and impact conditions agree quantitatively and qualitatively with
experimentally determined ones. Various theories by other workers of enhanced film thinning
due to electrical forces have been examined and have been found to be less successful. The theory
described here, which is based on an examination of the stability of charged interfaces in the
presence of surface waves, predicts critical drop charges to within an order of magnitude of those
found experimentally.

IIT. A PARAMETRIC METHOD FOR THE INVESTIGATION OF
THE STABILITY OF LARGE LIQUID DROPS

A method is described which permits the determination of the stability criteria for
liquid drops. Any given physical situation may be parameterized into components
which are independent of drop shape and other components which are dependent on
drop shape; the latter components may be interrelated by providing certain shape
constraints. A knowledge of the input parameters which are shape independent then
provides solutions for the extremes of drop shape. In many cases, the treatment is
essentially two-dimensional and is amenable to graphical methods of solution. Treat-
ments are given of an isolated ellipsoidal drop situated in an intense electric field; a
rotating, oscillating ellipsoidal drop; asymmetric breakup of pairs of unequal-sized
drops after collision. The method investigates rotational, electrostatic, and surface
energy contributions at moments in time when the kinetic energy of oscillation is a
minimum. Attention is drawn to the erroneous assumption made by previous workers
that stability criteria may be rigorously established by regarding the zero kinetic
energy condition as an equilibrium one. It is further shown that for asymmetric col-
lisions viscosity plays an important réle in determining drop stability; previous investi-
gators have assumed that viscosity effects can be neglected.
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INTRODUCTION

Many workers, for example, Appell (1932), Sperber (1962), Chandrasekhar (1965), and Cohen
etal. (1974), have considered the solution of dimensionless equations to determine the equilibrium
shape of rotating fluid drops. In determining such solutions, a necessary condition is that the
kinetic energy of the drop, measured in its centre-of-mass frame, is zero for all time. Brazier-Smith
et al. (1971) have used the equilibrium solution to explain drop instability; it is emphasized here
that such a procedure is incorrect.

An investigation of drop stability, however, may be undertaken by considering conditions
when the kinetic energy is a minimum (for example, at the extreme limits of oscillation). The
treatment described below examines drop motion in terms of two sets of dimensionless energy
terms, one set defining the shape-independent components of electrostatic, rotational, and total
energy of the system, and the other set defining the shape-dependent components of surface,
electrostatic and rotational energy involved. A solution is effected by applying some physically
realistic shape constraint to the system which leads to a unique relation between the shape-
dependent parameters; the behaviour of the system is then determined by the shape-independent
parameters.

Itis shown below that solutions of drop shape and criteria for drop instability may be obtained
in a convenient and illuminating manner by a graphical method of wide applicability.

THE GRAPHICAL TEGHNIQUE

Equation (I 3) may be rewritten
Ex +Ag+ 2eqdc+ e Ay = eq. (III1)
At certain times, ¢, 0 (¢)/0t = 0, though only instantaneously, and equation (III 1) reduces to
0(Ag+2¢c Ag+eg Ag) [0t = 0, (IT1 2)

and definition of the parameters ¢g, ¢ and ey leads to a relation between the unknown quantities
Ag, A, and Ag. It remains to choose a shape constraint as a model for the liquid-drop system
thereby leading to a further relation between Ag, Ay, and Ay which describes a surface in
Ay — Ay — Ag space. This surface is intersected by the plane represented by equation (III 2), the
points of intersection therefore identifying solutions [Ag, Ag, Ag] (¢). It is emphasized that the
solutions are not equilibrium states but configurations of minimum kinetic energy. The analysis
is considerably simplified if £¢ is assumed to be much smaller than ey whenever £x isa minimum.
This assumption is justified later by comparing predictions of the analysis with known results.
Then equation (III 1) may be written

AS + 230140 + eRAR = €. (III 3)

It frequently occurs that one of the quantities ey and eg may be neglected or is zero so that the
problem becomes two-dimensional. For example, the effect of electrostatic forces may be neg-
ligible so that equation (III 3) becomes

AS +eRAR = eT (III 4)

and defines a straight line in the 45— Ay plane. If, for such a system, a shape-constraint function
is found which relates Ay to Ag, then the two nonlinear equations may be solved for 4y, 4g and
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666 S.G.BRADLEY AND C.D.STOW

hence drop shape. Because of the complexity of the relation between Ag and Ay a graphical
analysis is useful. Figure 23 shows the general properties of the parametric shape-constraint
curve and the energy line.

The intercepts of the straight line represented by equation (III 4) with the parametric shape-
constraint curve then define the drop shape at the limits of deformation. If one of these limits
does not exist for a particular combination of eg and ey then deformation is unlimited and thedrop
system is unstable. In addition, permissible drop shapes must lie to the left of the energy line since
this is a necessary condition for kinetic energy to be positive. Energy lines with more than one
intercept with the parametric shape restraint curve correspond to a physically stable system.

AS+3RAR:eT

the parametric

a stable
energy

an unstable
energy
line

rotational shape parameter, 4y

ep

surface shape parameter, 4g

Frcure 23. The parametric shape-constraint curve and energy line. Each point on the parametric curve defines
a particular drop shapes. The unstable energy line has only one intercept with the parametric curve; the
stable energy line has more than one. All drop shapes must lie to the left of the energy line; this is the
condition that the kinetic energy is positive.

APPLICATIONS OF THE METHOD
(a) Ellipsoidal drop immersed in a strong electric field

An excellent example of the use of the parametric method is provided by the much-studied
case of an isolated ellipsoid situated in an intense electric field. For most circumstances, the
terms eg and Ay may be neglected and interest conentrated upon the relation between the
dimensionless quantities 4, 4g, ¢ and ep. Thus equation (III 3) becomes

Ag+ 260 A = e, (I11 5)

which is the energy line in the Ag— A plane.
Drop shape is defined by a single parameter, the axial ratio, y. It can be shown that

Ag = v?[311, (ITI 6)
where IT = (1/2¢%) In{(1+¢)[(1 —¢)} — 1]e?
and 2 =1—vy2
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COLLISIONS BETWEEN LIQUID DROPS 667

For oblate ellipsoids,  4g = 3y~-#{1 4+ (y2/2¢) In[(1 +¢)/(1—¢€)]}, (I117q)
where €2 =1—72

For prolate ellipsoids, Ay = 3y 3{1 4 (y/e) arcsine}. (I1175)

The equations (III 6)-(III7) relate 4; and Ag through the parameter y, and constitute a
parametric curve 4y = As(y); 4s = Ag(y) in the Ay — Ag plane. This curve is shown in figure 24
together with two straight lines representing equation (III 5) for two sets of ¢ and ep. One line,
A, indicates a case of stable drop oscillation, but the other line, B, only intersects the parametric
curve once and examination shows the drop to be oblate at this point. This is not an equilibrium
shape for the drop and so movement toward a prolate shape will ensue. However, no prolate
shape is possible which will satisfy equation (III 5), and so the drop becomes unstable. A close
examination of figure 24, using a considerably enlarged detail, showed excellent agreement with
the results obtained analytically by Brazier-Smith (1971).

| ! I
stable line (A) with _ 924
oscillation between
axial ratios of 2.9
ol 09 and 20 _
° 2.0
<
f'-:; 1.8
Q
1.6
g‘ &—unstable line (B)
<
o7 14
(9]
&
< 1.2
g 1r 7
s |10
$
£ 0.9
=
o 0.8
0.7
0.6
0.5 0.4
0 | | 1
1 1.1 1.2

surface shape parameter, A

Ficure 24. The ellipsoidal parametric shape-constraint curve for an oscillating drop situated in a strong external
electric field. Values of the axial ratio parameter are indicated along the curve.

It is possible for the energy line to contact the parametric restraint curve tangentially, so that
the two intercepts coincide and indicate a true equilibrium shape of a spheroid in an electric
field. Such tangential lines (for 1.4 < y < 1.8) also have a third intercept at high values of 4;
this agrees with the usual analysis which predicts two values of y for a particular external field.
As the slope of the tangent line increases, all three intercepts become closer and may coincide,
When this occurs, at the flat portion of the parametric curve, where y = 1.8, the ellipsoid is in
unstable equilibrium, in close agreement with conventional theory.

In figure 24, vertical energy lines represent free drop oscillation in the absence of an electric
field and thus the axial ratios corresponding to oscillation limits can be read directly from the
figure. The tangential coincident intercept, in the absence of an electric field, occurs at y = 1

70 Vol. 287. A.
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668 S.G.BRADLEY AND C.D.STOW

when the shape is a sphere; this is the equilibrium shape. Limiting axial ratios agree with the
classical theory (see Lamb 1932, for example).

(b) The rotating, oscillating ellipsoid

After the impact of two freely falling drops, the agglomerate mass may be conveniently
approximated by an ellipsoidal shape, so that

Ag = 2y8[(1 +97).

The corresponding parametric curve is shown in figure 25, with energy lines taking the form
of equation (III 4), and is totally different in form from the previous case. Although tangential
intercepts representing equilibrium rotation are possible, in no instance is drop instability pre-
dicted. Classical investigations of rotating ellipsoids (Maclaurin spheroids, Jacobi ellipsoids,
Poincaré pears, etc.) have not been restricted to rotational symmetry and as such give slightly
more accurate estimates of equilibrium drop shape (see Lamb 1932). Instability in these instances
is due to deformation into non-ellipsoidal shapes.

1.2 , ,

e
®

o
=~

rotational shape parameter, Ay

0 L |
1 11 1.2

surface shape parameter, 4g

Ficurk 25. The parametric shape-constraint curve for a rotating oscillating ellipsoidal drop.
Values of the axial ratio parameter are indicated along the curve.

The unconditional stability of a drop which is confined to an ellipsoidal shape is not surprising.
With increasing axial ratio, the rotational energy decreases but surface energy can increase
without bound. Since there is no maximum for the surface energy, a point of instability is never
reached. As discussed by Brazier-Smith (1971), however, the spheroidal assumption is limited
because of coupling with other oscillation modes during finite oscillations. The largest natural
oscillations recorded appear to be ¥y0x — Ymin = 0.9 reported by Jones (1959), and this suggests
that the validity of a spheroidal stability analysis would be restricted to the top left-hand peak
of the parametric shape constraint curve.
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There are other deficiencies of the ellipsoidal model. It is unrealistic for collisions between
drops of unequal size, and it does not predict the waist which is observed during oscillation.
Furthermore, collisions between drops of equal size are very rare occurrences in nature.

(¢) Non-symmetrical rotating liguid masses

Ifit is required to investigate the collision of drops of unequal size, a suitable shape—constraint
model must be found to describe the agglomerate mass bearing in mind that the degree of non-
symmetry should correspond to the difference in radius of the incident drops. A model is pro-
posed here which is based upon the theory for locating equipotential surfaces in the vicinity of an
array of point charges. Justification for the model is that if potential flow conditions are assumed
within the liquid mass, the surfaces described in both the electrostatic system and the fluid
system are those which satisfy the equation of Laplace; also in both systems the mechanical
forces exerted are perpendicular to the equipotential surfaces. Inspection of the equipotential
surfaces generated by unequal point charges shows a marked similarity to photographs of the
drop shape following the collision and during breakup of drops of unequal size.

r

1
!
1
!
1
'
1
I
|

z

m M
—(1-1)d 0 id
(If) d >|

Ficure 26. The geometry used to determine equipotential surfaces surrounding
liquid drops of mass M and m separated by a distance d.

A suitable mapping is therefore obtained for liquid drops of mass M and m by taking an
origin at the centre of mass and drawing equipotentials corresponding to charges of value M
and m. From figure 26, and writing [ = m/(M +m),

C=I[r+{z+(1~1) ]+ (1= D[+ {z— 1], (III 8)

where Cis a constant (equipotential). Such an equation, in which r and z are present to the eighth
power is cumbersome. However, computation showed that the fourth degree equation

C=I[r+{z+(1=0)dR]1 + (1 =D[2+{z— ] (I11 9)

describes almost identical ‘equipotential’ surfaces which have similar properties to those of
equation (III 8). Figure 27 shows two examples which use equation (II19) of the deformation
of a sphere which result in breakup. Curves (a) of figure 27 demonstrate symmetrical deformation
(I = 0.5), and curves () demonstrate asymmetrical deformation, where / = 0.05. In each case
the mass ratio of the drops at breakup, m/M, was that appropriate to the value of / used in
equation (III 8), but the elongation before breakup is less than that determined from the investi-

gation described in part I. An increase in elongation may be achieved in the mapping model by
70-2
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670 S.G.BRADLEY AND C.D.STOW

using a multipole expansion of the drop surface, say by using two pairs of colinear masses, but
no such attempt has been made in the present work. Satellite drop production caused by Rayleigh
jet rupture may be modelled by a multipole expansion representing a line of lesser masses placed
between the major masses; the effect of the lesser masses only becomes evident as a filament
develops.

Ficure 27. Stages in the development of symmetrical and asymmetrical
breakup according to the equipotential model.

The parametric shape constraint curve is shown for several values of / in figure 28 and may
be used to investigate the drop behaviour resulting from a collision between pairs of drops of
unequal size. Equal masses (/ = 0.5) have a similar form of curve to the ellipsoidal parametric
curve previously discussed, except for the breakup shown in figure 28 to occur at 4g =~ 1.28.
Breakup is due to the separation of the fragments when the diameter of the neck becomes zero.
The curves for other values of / progressively depart from the ellipsoidal form. Only that part
of the curve for which the drop is prolate in character is known; it is assumed that a curve similar
to the ellipsoidal case describes shapes which are oblate in character. It is the prolate portion of
the parametric curve which determines the point of instability. Two limiting cases of stability
arise and are discussed below.

(d) Criteria for stability following a collision
(i) Critical impact parameter

In a two-drop system it is possible to maintain the kinetic energy at a constant value while
independently varying the energy of rotation. This is equivalent to considering impacts where
the relative velocity is fixed but the separation of drop trajectories in the centre of mass frame is
allowed to vary. Then, if the relative velocity is sufficiently large, a critical impact parameter
(or separation) will exist such that the increased rotational energy will result in instability and
breakup. This is the condition which has been erroneously treated by Brazier-Smith et al. (1971)
as an equilibrium state.

From equation (III1) the initial energy condition is

AP +ep AD = ex — £, (III 10)
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where the superscript (¢) refers to the values of the initial energy states. The energy line in this
case, for which £x (¢) = 0, is given by equation (111 4), and it follows that the point(4 ¥ + £, A{)
in the 4g — Ay, plane will lie on this line for all values of ey. Since the initial kinetic energy £ is
held constant, the point (49 + £, AY) becomes a pivotal point for all energy lines describing
the condition £x (¢) = 0. From figure 294 it may be deduced that the slope of such energy lines
must exceed a certain limit if the line is to pass through the pivotal point and also intersect the
parametric curve. This limit is expressed by the condition

on= (A9 +ED) _ AP~ (4D +£§0)
A STAD AP

(111 11)

where the superscript (b) refers to the values of the energy states at the moment of breakup.

1.2 [ 1

supposed oblate
continuation

M
~
Sy
% 08 approximate zero ]
§ Kinetic energy line
<
=% SN
2 %
c BD\
c N
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g 0.4 ~~ N
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8
2 N i)/arallel \
N e
¢ lines
AN
1=0.03 0.1 0.2 N\
N
0 | | \
1 1.1 1.2 1.3

surface shape parameter, Ag

Ficure 28. A set of parametric shape-constraint curves for collisions between drops of unequal radii. Breakup
occurs at the knee of each curve. Points A and B are discussed in the text.

Equation (III 11) overestimates the limiting slope for stability because the energy loss due to
viscous dissipation is not accounted for. The energy dissipation during drop oscillation following
a collision may be developed for small oscillations from the theory given by Lamb (1932); calcu-
lations performed by Foote (1973) for the case of finite oscillations agree closely with this theory.
The viscous energy loss is proportional to the sum of kinetic energy and potential energy, and
can be written as n(ep — 1) where # depends upon the number of oscillations performed by the
drop. The corresponding energy line at breakup, for which £x (¢) = 0, is therefore

As-l-eRAR = eT-n(eT——l)

= (1—n)ex+n. (II1 12)
70-3
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672 S. G. BRADLEY AND C.D. STOW

From equation (III 10), the point ({4§) + &9} {1 —n} +n, AP {1 —n}) therefore lies on the line
defined by equation (III 14) and is the new pivotal point shown in figure 295. Thus the stability
condition of equation (III 11) is replaced by

en(L=n) 41— {(AD+ E0) (1=n) 47} _ AP (A9 +50) (1 =1) +1}
AP (1 —n) = AD (1 —n) — 4D ’

which may be rearranged to give
AP~ (A9 +0) (1) —n

n S T s D (11 13)

(i) i i
(AY+el, AY)
N

stable
slope —1 ey,

S«—unstable
N

N
limit N
N

ey increasing e —>

({A(;)"F g ,{;’}{l- njtn, A(fz(l-— n))

(0)

(AY,4%)

«—1imit

rotational shape parameter, Ay

ep(1=n)+n

/—~-"4rdccrcasing er

(AL AD)

|

1
)
|
\

<
stable —>
stable >\ [<-unstable

N\

epln) +n
surface shape parameter, 4g

Ficure 29. (a) the determination of the upper limit of ey for drop stability; (4) the determination of the upper
limit of e; when the effect of viscous dissipation is included; (¢) the determination of the lower limit of ey
for drop stability, assuming that the total energy, ey, is held constant.

For a single cycle of ellipsoidal-mode oscillation, theory by Lamb (1932) predicts that

n=1—exp{—10vn(p/2TR)}},

where » is the kinematic viscosity, p is the density, 7 is the surface tension of water, and R is the
drop radius. The value of # increases as R increases and, for example, # = 0.14 when R = 0.6 mm.
The initial point (49 +£%), AY) and the corrected pivotal point (0.86 AS + £ +0.14, 0.86 AD)
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are shown in figure 28 as the points A and B respectively. The limiting line for stability drawn
through point Bis very nearly parallel to the line through (1, 1) and (4%, 0), which is also indicated
in figure 28. This suggests that equation (III 13) could be re-expressed in terms of the gradient of

this parallel line by er < (AP —1)/(1—0) = AP — 1. (ITI 14)

Equation (III 14) is the condition of stability obtained by Brazier-Smith et al. (1971) by
entirely different reasoning and, although the assumptions they made in obtaining this solution
were not stated explicitly, it is important to investigate these carefully. They assumed that the
colliding drops formed a sphere having zero kinetic energy and that the limiting case was asso-
ciated with a disintegration which produced two spheres having the same radii as the initial
colliding drops. The separating drops were assumed by Brazier-Smith ez al. (1971) to have zero
kinetic energy and zero rotational energy. The case in which colliding drops attain a spherical
shape having zero kinetic energy is a very special case indeed; for almost all time, the agglo-
merated mass resulting from a collision may be expected to suffer severe distortion. In view of
the particular assumptions made by Brazier-Smith ef al. (1971), the agreement between their
criterion for stability and their experimental data appears to be fortuitous.

The approximate criterion for instability, given by equation (III 14) is expected to be valid
for the collisions between drops of different radius provided that the radius ratio of the incident
drops does not exceed 3; where the ratio exceeds this value, the slope of the limiting energy line
will exceed (4% — 1)~1. A more quantitative evaluation is not possible without data on the viscous
energy loss in asymmetric collisions. It remains, however, that viscosity is of appreciable impor-
tance in determining stability; previous investigators have assumed that viscosity was a factor
which could be ignored in such calculations.

(ii) Critical total energy parameter

The second criterion of stability is that the total energy, ey, must not exceed the minimum to
cause drop breakup. This condition may be written

ep—n(ep—1) < eg AR +AY
so that stability is achieved when

{(1—=n)ep+n—ADYAD < e < AP —1, (111 15)

the first inequality being illustrated in figure 29¢. Two bounds are thus imposed upon the para-
meter ¢g which are investigated further.

(iii) A test of the stability criteria

Consider a drop of radius R impacting with a smaller drop of radius r at a speed relative to
the latter of U.

The values of AR and 4P may be related to the initial values of 4{) and A$ through the

. l ;' 3
expressions AP = PR AD, AP = P AQ,

where ¥ and Wy are unknown functions, and substituting for ey and ey, from part I, equation
(ITI 15) becomes

(1+%) PRl —n+6{(1—n—W5) (L+ %) +n(1+38 (1+4°) /(52 We)]
< X2 < 12[{1+ 42— (1+ 4%} (1 + )] [54% (1 + 5)2We], (I1116)
where # = Rfr, and We is the Weber number = rpU?/o.
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674 S. G. BRADLEY AND C. D.STOW

The form of equation (III 16) is
1-5/U? < X% < ¢[U?,
where a, b, and ¢ are constants dependent upon the values of the radius of the incident drops.
The function defined by equation (III 16) is compared with the experimental results of Adam
et al. (1968). Values of ¥g and ¥y, are taken from figure 28 and the results of the comparison are
shown in figure 30. The theory given here is seen to predict accurately the upper limit for X,
but the lower limit is not well estimated. The poor fit to the lower limit of X is not unexpected,
since the nature of the instability modelled here assumes that breakup will occur when the
aggregate drop reaches an extreme prolate shape. In fact, the experiments described in part I
demonstrate an onset of instability at a moment when an extreme oblate shape occurs. When the
drop assumes a disk-like shape, waves form around the perimeter of the disk and become rapidly
amplified until the disk folds along a diameter. A prolate shape is then rapidly formed and breakup
follows: this form of instability is clearly much more complicated than that investigated above.

impact parameter, X
(=
<

Weber number ‘%, Wed

Ficure 30. A comparison of the theoretical predictions of the limits of the impact parameter, X, as a function of
the Weber number, We, to provide stable coalescence, with the experimental values of the limits as deter-
mined from the work of Adam et al. (1968) who studied the collisions of drops of equal size. O, Drops of
60 um radius; A, drops of 300 um radius; ——-, theoretical prediction.

SUMMARY

A technique of wide applicability has been developed which allows drop stability to be
investigated under very general conditions. A useful example is given of the technique applied
to the oscillations of a spheroidal drop situated in an electric field. The coalescence problem
proved far more difficult to treat, but some useful results on stability have emerged. A new method
for the modelling of non-symmetrical breakup has been presented and extensions of the method
discussed which could lead to interesting future work.
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F1IGURE 4. A sequence of frames showing the collision of a drop of radius 1.7 mm
with one of radius 1.2 mm. The impact parameter, X, 1s zero.
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Ficure 5. As for figure 4 but with the impact parameter, X, set to 0.35.
The series exemplifies disruption by rotation.
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Ficure 6. As for figure 4 but with the impact parameter, X, set to 0.90.,
The series shows disruption by a shearing action.
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